The importance of the TiO2/quantum dots interface in the recombination processes of quantum dot sensitized solar cells.
نویسندگان
چکیده
Quantum dot sensitized solar cells (QDSSCs) present a promising technology for next generation photovoltaic cells, having exhibited a considerable leap in performance over the last few years. However, recombination processes occurring in parallel at the TiO(2)-QDs-electrolyte triple junction constitute one of the major limitations for further improvement of QDSSCs. Reaching higher conversion efficiencies necessitates gaining a better understanding of the mechanisms of charge recombination in these kinds of cells; this will essentially lead to the development of new solutions for inhibiting the described losses. In this study we have systematically examined the contribution of each interface formed at the triple junction to the recombination of the solar cell. We show that the recombination of electrons at the TiO(2)/QDs interface is as important as the recombination from TiO(2) and QDs to the electrolyte. By applying conformal MgO coating both above and below the QD surface, recombination rates were significantly reduced, and an improvement of more than 20% in cell efficiency was recorded.
منابع مشابه
SILAR Sensitization as an Effective Method for Making Efficient Quantum Dot Sensitized Solar Cells
CdSe quantum dots were in situ deposited on various structures of TiO2 photoanode by successive ionic layer adsorption and reaction (SILAR). Various sensitized TiO2 structures were integrated as a photoanode in order to make quantum dot sensitized solar cells. High power conversion efficiency was obtained; 2.89 % (Voc=524 mV, Jsc=9.78 mA/cm2, FF=0.56) for the cells that sensitized by SILAR meth...
متن کاملRestricted charge recombination process in PbS quantum dot sensitized solar cells by different coating cycles of ZnS films
The relatively low power conversion efficiency (PCE) of quantum dot sensitized solar cells (QDSSCs) is attributed to charge recombination at the interfaces. Charge recombination process could be suppressed by coating the QD layer with a wide band gap semiconductor such as ZnS, which acts as a blocking layer between the QDs and hole transport material (HTM). In present study, to improve PCE of P...
متن کاملحساس سازی همزمان سلولهای خورشیدی نقاط کوانتومی متشکل ازفوتوآند نانوبلوری TiO2 با نانوذرات CdS و PbS و بررسی تأثیر نقاط کوانتومی PbS بر عملکرد سلول خورشیدی
In this research, CdS and PbS quantum dots were applied as the light sensitizers in TiO2 based nanostructured solar cells. The PbS quantum dots could absorb a wide range of the sunlight spectrum on earth due to their low bandgap energy. As a result, the cell sensitization is more effective by application of both CdS and PbS quantum dots sensitizers. The TiO2 nanocrystals were synthesized throug...
متن کاملEffect of PbS Film Thickness on the Performance of Colloidal Quantum Dot Solar Cells
Colloidal quantum dots offer broad tuning of semiconductor band structure via the quantum size effect. In this paper, we present a detailed investigation on the influence of the thickness of colloidal lead sulfide (PbS) nanocrystals (active layer) to the photovoltaic performance of colloidal quantum dot solar cells. The PbS nanocrystals (QDs) were synthesized in a non-coordinating solvent, 1-oc...
متن کاملPreparation of CdIn2S4-CdS nanocomposite via a green route and using them in dot-sensitized solar cells for boosting efficiency
In this work In2S3 and CdS nanoparticles were prepared by a simple hydrothermal method and then annealed at 500 °C for 2 h in an Ar gas until CdIn2S4(CdIS)-CdS nanocomposites were formed. Afterwards, efficiency of the as-synthesized CdIS-CdS nanocomposite in quantum dot-sensitized solar cells (QDSSCs) was evaluated. For this purpose, the as-prepared CdIS-CdS nanocomposites were deposited on TiO...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 15 11 شماره
صفحات -
تاریخ انتشار 2013